Rayat Shikshan Sanstha's

Karmaveer Bhaurao Patil College, Vashi

(Empowered Autonomous)

Syllabus for Approval

Sr. No.	Heading	Particulars
1.	Title of the Course	S.Y.B. Sc. in Biotechnology
2.	Eligibility for Admission	F.Y.B. Sc in Biotechnology
3.	Passing Marks	40%
4.	Ordinances/ Regulation	
5.	No. of Years/ Semester	1 Year / 2 Semesters
6.	Level	Undergraduate (UG)
7.	Pattern	Semester
8.	Status	Revised (Under Autonomous Status)
9.	To be implemented from Academic Year	2024-25

Date:

Name of BOS Chairperson:______Signature: _____

RAYAT SHIKSHAN SANSTHA'S KARMAVEER BHAURAO PATIL COLLEGE, VASHI

(AUTONOMOUS)

Proposed Syllabus

For

S.Y. B.Sc. in Biotechnology

2024-25

Preamble of the Syllabus:

Bachelor of Science (B.Sc.) in Biotechnology is a under graduation course of Department of Biotechnology, Karmaveer Bhaurao Patil College Vashi, Navi Mumbai, affiliated to University of Mumbai (MH). Biotechnology is defined as the application of technological principles for the processing or manipulating biological agents to provide goods and services. It derives its strength by harnessing biological processes that sustain life. It is a technology that is more reliable and firmer. Biotechnology has the potential to transform the lives of the people by impacting hugely on agriculture, animal husbandry, health and medicines, environment, sustainable development, etc. Biotechnology has accomplished tremendous applications in just a matter of time. People have just started to recognize the endless window of opportunities it has open. Biotechnology has revolutionized the recent advancements in research and development. CBSGS: The Choice Based Semester and Grading System to be implemented through this curriculum would allow students to develop a strong footing in the fundamentals and specialize in the disciplines of his/her liking and abilities.

Program Education Objective (PEO's):

To prepare students to prime for-

- Higher education and research in field of biotechnology and related subjects.
- Careers related broadly to biotechnology and life sciences. Students will embark upon diverse career paths medical coding/pharmaceutical/biotechnology industries, and use their education in a variety of related endeavors.

Course Objective:

- To produce students who understand fundamental principles of basic sciences and apply that understanding to analyze, solve problems and interrelate with current technological developments.
- To promote independent learning and add rationale thinking, knowledge ability by activity-based learning, innovative, teaching learning and evaluation methods.

Name of the Faculty: Science and Technology

Name of the Program: B Sc

Program Outcomes (POs):

PO-1	Disciplinary Knowledge:
	Understand the basic concepts, fundamental principles, theoretical formulations and
	experimental findings and the scientific theories related to Physics, Chemistry,
	Mathematics, Microbiology, Computer Science, Biotechnology, Information Technology
	and its other fields related to the program.
PO-2	Communication Skills: Develop various communication skills such as reading, listening
	and speaking skills to express ideas and views clearly and effectively.
PO-3	Critical Thinking: Propose novel ideas in explaining the scientific data, facts and figures
	related to science and technology.
PO-4	Analytical Reasoning and Problem Solving: Hypothesize, analyse, formulate and
	interpret the data systematically and solve theoretical and numerical problems in the
	diverse areas of science and technology.
PO-5	Sense of Inquiry: Curiouslyask relevant questions for better understanding of
	fundamental concepts and principles, scientific theories and applications related to the
DO (study.
PO-6	Use of Modern Tools: Operate modern tools, equipment's, instruments and laboratory
	techniques to perform the experiments and write the programs in different languages
	(software).
PO_7	Research Skills: Understand to design collect analyze interpret and evaluate
10-7	information/data that is relevant to science and technology
	mormation/data that is relevant to science and technology.
PO-8	Application of Knowledge: Develop scientific outlook and apply the knowledge with
	respect to subject.
PO-9	Ethical Awareness: Imbibe ethical, moral and social values and exercise it in day-to-day
	life.
PO-10	Teamwork: Work collectively and participate to take initiative for various field-based
	situations related to science, technology and society at large.
DO 11	
PO-11	Environment and Sustainability: Create social awareness about environment and develop sustainability for betterment of future.
	develop sustainability for betterment of future.
PO_12	Lifelong Learning: Ability of self-driven to explore learn and gain knowledge and new
10-12	skills to improve the quality of life and sense of self-worth by paying attention to the ideas
	and goals throughout the life.
	una gouis un oughout me me.

Name of the Faculty: Science and Technology

Name of the Program: B. Sc Biotechnology

Program Specific Outcomes (PSOs):

Students will be able to –

PSO-1	Identify, understand and analyze problems and propose valid solutions related to
	field of Biotechnology.
PSO-2	Critically evaluate biotechnological solutions on environment and societies keeping
	in mind the need for sustainable solutions.
PSO-3	Develop a research-based ideology and technical skills to build career in
	Biotechnology.

Scheme of examination for Each Semester:

Continuous Internal Evaluation: 40 Marks (Common Test-20 Marks & 20 Marks for Assignment, Projects, Group discussion, Open book test, online test etc.) **Semester End Examination:** 60 Marks will be as follows –

Ι	Theory:					
	Each theory	Each theory paper shall be of two- and half-hour duration.				
	All question	as are compulsory and will have internal options				
	Q-1	From Unit – I (having internal options.) 12 M				
	Q-2	From Unit – II (having internal options.) 12 M				
	Q-3	From Unit – III (having internal options.) 12 M				
	Q-4	From Unit – IV (having internal options.) 12 M				
	Q-5	Questions from all the FOUR Units with equal weightage of marks allotted to each Unit. 12 M				
II	Practical:	The External examination per practical course will be conditioned following scheme.	ucted as per the			
Sr. No.	Particulars of	of Semester End Practical Examination	Total Marks			
Ι	Semester en	d Practical Exam	300			

SEMESTER-III

S.Y. B. Sc Biotechnology (Honors) Proposed Semester III Syllabus 2024-25

Semester III & IV Plan

Sem	Major	Minor	OE	VSC, SEC (VSEC)	AEC, VEC, IKS	OJT, FP, CEP,	Cum Cr. / Sem
ш	1 Enzymology	Molocular	Hoolth &	VSC	IKS 2	RP FP/	22
111	(4 Credits)	Biology	Hvgiene	Biogas	113-2	CEP	44
	((4 Credits)	(2 Credits)	Production	(2 Credits)	2	
	(BT201)					(Sci)	
	2 Molecular	(BT202)	(BT203)	(2 Credits)	(BT205)		
	Biology			(BT204)		0.02	
	(BT202)						
IV	1. Genetic	Genetic	Nutracenticals	SEC	Scientific	FP/	22
1,	Engineering	Engineering	(2 Credits)	Biofertilizer	Communications	CEP	
	(4 Credits)	(4 Credits)		Production	& Skills	2	
	(BT2 51)	(BT251)	(BT253)	(? Credits)	(? Credits)	(Arts/	
	(01251)	(01231)		(2 Creans)	(2 Creats)	&	
	2. Immunology			(BT254)	(BT255)	CC2	
	(4 Credits)						
	(BT252)						
Cum	8 + 8	4+4	2 + 2	2 + 2	2 + 2	4 + 4	44
Cr.					1		

S.Y. B.Sc Biotechnology (Honours) Proposed Semester III Syllabus 2024-25 Major-1

Paper Name: Enzymology Paper Code: BT 201 No. of credits: 4				
Course Outcome	Student will be able to – CO-1: Understand fundamental vocabulary and Concepts of Enzymes CO-2: Differentiate between various factors affecting enzyme activity CO-3: Describe the concepts of co-operative behaviour, enzyme inhibition and allosteric regulation CO-4: Illustrate the major applications of enzymes in various industries and in Biosensors	No. of lectures		
Unit 1 Introduction	Definition, Classification, Nomenclature, Chemical Nature, Properties of Enzymes, Mechanism of Enzyme Action, Active Sites, Enzyme Specificity, Co-Factors, Co-enzymes, Zymogens,	15 Lectures		
Unit 2 Enzymen Kinetics	Michelis-Menten Equation, Lineweaver Burk Plot, EadieHofstee Plot, Factors affecting enzyme activity, "concerted" & "sequential" models for allosteric enzymes Types of Enzyme Inhibitions-Competitive, Uncompetitive, Non-Competitive Allosteric Modulators, Enzyme regulation and its mechanism, Covalent modifications of enzyme, Feed back inhibition	15 Lectures		
Unit-3 Applications	Industrial: Textile industry, Paper and pulp industry, Animal Feed Industry, Enzyme technology for detoxification of mycotoxins in animal feed, Phytases for feed application and leather industry, Enzymes for human and animal nutrition. Medical: Biosensors; introduction, instrumentation, types and examples, Enzyme based sensors as diagnostic tools- Biosensors for Blood glucose, Biosensors for urea in blood and urine, Biosensors for Uric acid, Biosensors for Arginine, Biosensors for Asparagine, Biosensors for Creatinine, Biosensors for Cholesterol, Allosteric enzyme based biosensors.	15 Lectures		

Enzymology-References

1. Lehninger Principles of Biochemistry - 4th Ed (2005) - Nelson, D., and Cox, W.H. Freeman and Company, New York,

2. Biochemistry (2013) - Satyanarayan and Chakrapani, New Delhi, Elsevier Health Sciences APAC,.

3. Biochemistry, 5th Ed, (2002) - Berg JM, Tymoczko JL, Stryer L Freeman WH and Co., New York.

4. Understanding enzymes (3rd edition). Edited by Trevor Palmer, Ellis Horwood, Chichester, 1991.

Laboratory Sessions

Enzymology

Effect of pH, Temp, Substrate concentration, Enzyme concentration, Inhibitor on Enzyme activity
 Determination of LDH activity in serum

3. Determination of serum glucose using Glucose oxidase-peroxidase method

4. Liver function tests: SGOT & SGPT

5. Kidney function tests: Urea, Uric acid & Creatinine

6. Determination of serum acid phosphatase

7. Determination of serum alkaline phosphatase

Major-2

Paper Name: Molecular Biology Paper Code: BT 202 No. of credits: 4

Course Outcome	Student will be able to – CO1-Learn structures of nucleic acids CO2-Find Out difference between prokaryotic & eukaryotic DNA replication CO3-Understand central dogma of life CO4-Describe translation & post translation events in organism	No. of lectures
Unit– 1: Nucleic Acids and DNA Replication	Structure of DNA, RNA, DNA Replication in Prokaryotes and Eukaryotes, Semi-conservative DNA replication, DNA Polymerases and its role, <i>E.coli</i> Chromosome Replication, Bidirectional Replication of Circular DNA molecules. Rolling Circle Replication, DNA Replication in Eukaryotes DNA Recombination – Holliday Model for Recombination, Types of Mutations, DNA repair	15 Lectures
Unit– 2: Transcription Gene expression	Types of RNA, Structural and functional genes, An overview of transcription process in prokaryotes, mRNA synthesis in eukaryotes - Promoters and enhancers, Initiation of transcription at promoters, Elongation and termination of RNA chain, Post transcriptional modifications	15 Lectures
Unit – 3: Translation	Deciphering genetic code, Characteristics of Genetic code, Wobble Hypothesis Translation in Prokaryotes Initiation, Elongation and Termination, Post translational modifications, Protein sorting. Post translational modifications	15 Lectures

Molecular Biology - References

- 1. Genetics by Peter Russell, 5th Edition
- 2. i Genetics A Molecular Approach by Russell, 3rd Edition
- 3. Genes VIII by Benjamin Lewin
- 4. Molecular Biology of the Gene by J.D. Watson and Baker, 5th Edition
- 5. Molecular Biology by Robert Weaver, 2nd Edition

Laboratory Sessions

Molecular Biology

1.	Extraction of genomic DNA from plant source
2.	Measurement of purity and quantity of DNA
3.	Agarose Gel Electrophoresis (Demonstration)
4.	Polyacrylamide gel electrophoresis (Demonstration)

Open Elective (OE)

Paper Name: Health & Hygiene Paper Code: BT203 No. of credits: 2

Course Outcome	Student will be able to – CO1- Understand the importance of health, hygiene and associated diseases CO2- Gain the knowledge of occupational hygiene and sanitization problems of the work place.	No. of lectures
Unit 1: Introduction to	Definitions and Concepts, Global, national and	15 lectures
sanitation&	& sanitation, Relevance & importance of health,	lectures
hygiene for	hygiene in the contemporary times, Present scenario of	
health and its	health hygiene in India, Diseases and disorders that can	
practices in	be controlled and remedied through the adoption of	
India	principles of hygiene	
Unit 2:	Concept, definition and its role, Link between	15
Occupational	occupational hygiene, risk assessment & risk	lectures
Health and	management, Sanitation problems of the workplace:	
Hygiene & its	industries, academic institutions, corporate, hospitals,	
promotion and	Public spaces etc., Hygiene Behavior promotion &	
education	education- concept and its importance, Hygiene	
	promotion & education in children & adolescence,	
	Government initiatives & policies in rural & urban area	

Health & Hygiene -References

1. A college text book of health and hygiene, Arvind Kumar Goel, 1^{st} edition (1 Jan 2005), ABD publishers

Public health and hygiene, Dr. K.Dass, Notion press (20 May 2021)

E-RESOURCES: • Water, Sanitation and Culture, <u>http://www.sswm.info/content/water-sanitation-and-culture</u>

Vocational Skill Course (VSC)

Paper Name: Biogas Production Paper Code: BT204

No. of credits: 2

Course	Student will be able to –	No. of lectures
Outcome	CO-1: Enlist and describe various types of biofuels	
	CO-2: Understand the biological and chemical process	
	of biogas production	
	CO-3: Design a biogas plant and produce biogas	
Unit 1:	Biofuels: Biomass characteristics and their	15
Introduction	availability, Biofuel production processes:	lectures
	Biomethane, Biohydrogen, Alcoholic	
	fermentation, Biodiesel, Microbial Fuel Cell,	
	Biomass based steam power plant, combined	
	cycle powerplant, cogeneration plant	
Unit 2 Biogas	Ecology of Biogas, Chemical composition,	15
Production	Types and applications, Production rates,	lectures
Process	Types, working and design calculations of	
	biogas plant, case study	

Biogas Production - References

- 1. Biogas Energy, P.N.Singh
- 2. Anaerobic Biotechnology for Bioenergy Production: Principles & Applications, Edited by Samir Khanal
- 3. Biogas Handbook, Arthr Wellinger, Jerry Murphy & David Baxter

Indian Knowledge System-2 (IKS-2)

Paper Name: Indian Knowledge System Paper Code: BT205 No. of credits: 2

No. of credits: 2

Course Outcome	Student will be able to –	No. of lectures
	CO-1 Major sequential development in Science & Technology CO-2 Trace, identify and develop the ancient knowledge system to make meaningful contributions in the development of science CO-3 Understand the universal solution from Ancient Indian Knowledge system for the scientific, technological and holistic development	
Unit 1:	Indian Traditional Knowledge; Science & Practices	15 Lectures
Unit 2:	Ancient Indian Science; Textile, Agriculture, Transport, Ayurveda etc.	15 Lectures

References:

- 1. Biotechnology & Traditional Knowledge; Dr. S. K. Jadhav
- 2. Science & Technology in Ancient Indian Texts; Bal Ram Singh, Nath Girish, Umesh Kumar Singh
- 3. Methodology of Ancient Indian Science; Prof. W. K. Lele
- 4. Ancient Indian Science & Technology; Dr. Shiv Swaroop Sahai
- 5. Ancient Indian Sciences; Subodh Kapoor
- 6. Ancient Indian Sciences; Swami Chidatman Jee Maharaj

SEMESTER-IV

S.Y. B.Sc Biotechnology (Honours) Proposed Semester IV Syllabus 2024-25 Major-1

Paper Name: Genetic Engineering Paper Code: BT 251 No. of credits: 4

Course Outcome	Student will be able to –	No. of lectures
course outcome	CO1-Learn enzymes used in genetic engineering	
	CO2-Understand properties of vector	
	CO3-Learn various concepts of recombinant DNA	
	technology	
	CO4 Describe techniques in transgenic animal and	
	rlents	
	plants	
Unit 1: Enzymes	Sources, Mode of Action, Applications of Nucleases –	
& vectors in	Endo, exo, DNase –I, RNase, S1 Nuclease, Mung bean	
Gene Cloning	nuclease Restriction endonucleases - types,	15 Lectures
0	nomenclature, target sites, nature of cut ends, host	
	control restriction and modification, star activity,	
	isoschizomeres, neoschizomeres, examples with	
	restriction sites. Ligases, DNA polymerase. Reverse	
	transcriptase. Alkaline phosphatases. Polynucleotide	
	kinase. Terminal transferase	
	Properties of ideal vector, copy number Plasmid	
	cloning vector – pBR322, pUC19 Phage vectors –	
	Lambda phage vectors, M13 Cosminds, Shuttle vectors,	
	Expression vectors pET vectors YAC BAC Plant	
	vectors – Ti Plasmid derived vector. Plant viruses	
	derived vectors	
Unit 2:	Recombinant DNA technology. Detection of clones.	
Techniques in	Electrophoresis. Construction and screening of gDNA	
Genetic	and cDNA libraries. Restriction digestion. Southern	15 Lectures
Engineering	Blot analysis, Northern Blot analysis, Western blot	
0 0	analysis, DNA sequencing, Polymerase chain reaction	
	and variations, Chromosome walking, jumping	
Unit 3: Genetic	Transgenic plants: Physical methods of transferring	

Engineering	in	genes to plants: electroporation, microprojectile	
Plants	and	bombardment, liposome mediated, protoplast fusion;	15 Lectures
Animals		Chemical Methods for transferring genes to plants	
		:Calcium phosphate, DEAE dextran	
		Transgenic Animals: Transgenic mice- methodology-	
		retroviral method, DNA microinjection, ES method;	
		genetic manipulation with cre-loxP; Vectors for animal	
		cells; Transgenic animals recombination system;	
		Cloning live stock by nuclear transfer; Transgenic	
		Livestock, Synthetic biology- improvement of seed	
		quality proteins and transgenic fish	

Genetic Engineering-References

Biotechnology, S.S. Purohit

- 2. Principles of Gene Manipulations, Primrose
- 3. Gene Cloning, T.A.Brown
- 4. The Dictionary of Cell and Molecular Biology, 4th ed., J.M. Lackie

Laboratory Sessions

Genetic Engineering 1 Isolation of genomic DNA from E.coli 2 Isolation of plasmid DNA 3 Separation of DNA by AGE 4 Study of restriction digestion 5 To amplify the gene using PCR 6 To separate protein samples using SDS PAGE 7 Detection of specific protein by western blotting technique.

Major-2

Paper Name: Immunology Paper Code: BT 252 No. of credits: 4

Course Outcome	Student will be able to –	No. of lectures
	CO1-Describe the interaction between antigens and	
	antibodies	
	CO2-Understand significances of various methods of	
	antigen/antibody detection and	
	quantification	
	CO3-Understand the receptors involved in signal	
	transduction to elicit an immune response	
	CO4-Understand the negative effects of overexpression	
	of immune response	
Unit 1:	Overview of Immune system. Innate and Adaptive	
Introduction to	Immunity. Hematopoiesis Cells of the Immune System:	
Immunology and	Lymphoid Cells [B Lymphocytes (B Cells),T Lymphocytes (T	15 Lectures
Effectors of	Cells)], Natural Killer Cells, Mononuclear Phagocytes,	
Immune	Granulolytic Cells, Mast Cells, Dendritic Cells, Follicular	
Response	Dendritic Cells. Organs of the Immune System: Primary	
-	Lymphoid Organs, Secondary Lymphoid Organs	
Unit 2: Antigens	Antigens: Immunogenicity Versus Antigenicity,	
and Antibodies	Epitopes, Types of Antigens, Haptens, Adjuvants	
	Antibodies: Basic Structure of Antibodies, Antibody	15 Lectures
	Classes and Biological Activity, Antigenic	
	Determinants on Immunoglobulins Monoclonal	
	Antibodies, Hybridoma Technology	
Unit 3: Antigen –	Precipitation reaction, Precipitin curve,	
Antibody	Immunodiffusion reactions - single/ double/ radial,	
Interaction	immunoelectrophoresis Agglutination reactions,	15 Lectures
	Radioimmunoassay ELISA, ELISPOT, Western	
	blotting, CFT, Immunoprecipitations,	
	Immunofluorescence, Chemiluminiscence, Flow	
	cytometry	

Immunology -References

1. Immunology, Barbara A. Osborne and Janis Kuby

- 2. Textbook of Microbiology, Ananthnarayan
- 3. Immunology, C.V.Rao
- 4. New Generation Vaccines, 4 th ed., Myrone M. Levine5. Molecular Biotechnology, Glick and Pasterneck

Laboratory Sessions

Immunology

1.	Determination of relationship between 2 given antigen by Ouchterlony's method	
2.	Determination of the concentration of antigen using Radial immunodiffusion	
	technique	
3.	To determine the presence of antigen by sandwich ELISA method	
4.	To determine the presence of antigen by DOT ELISA method	
5.	To determine the RA antigen	
6.	Hemagglutination	

Open Elective (OE)

Paper Name: Nutraceuticals Paper Code: BT253

No. of credits: 2

Course	Student will be able to –	No. of lectures
Outcome	CO-1: Understand the concept of nutraceuticals and its	
	sources with associated health benefits	
	CO-2: Gain knowledge about prebiotics, probiotics and	
	scope of nutraceutical industries	
Unit 1: Basics of	Definition and concept of nutraceuticals	15
nutraceuticals	Common sources on nutraceuticals (plants, animals	lectures
	and microorganisms)	
	Popular examples of nutraceuticals (vitamins, minerals	
	and herbal extracts)	
	Health benefits and potential risks associated with	
	nutraceutical consumption	
Unit 2:	Concept of prebiotics, probiotics and symbiotic.	15
Prebiotics,	Prebiotics: Non-digestible carbohydrates- Dietary	lectures
Probiotics and	fibers, functional	
Symbiotics	oligosaccharides, Resistant starch and gums.	
	Probiotic microorganisms- Features and health	
	benefits.	
	Probiotics in various foods: Dairy-based, fermented	
	and non-fermented foods.	
	Nutraceutical Industry: Scope of Industry, Indian and	
	global scenario	

Nutraceuticals - References

- 1. Nutraceuticals: Efficacy, Safety and Toxicity by Ramesh C.Gupta
- 2. Nutraceuticals: A complete guide by Mark Lawrence
- 3. Handbook of nutraceuticals, Volume I by Yashwant Pathak, CRC press (pdf available online)

Skill Enhancement Course (SEC)

Paper Name: Biofertilizer Production

Paper Code: BT254

No. of credits: 2

Course	Student will be able to –	No. of lectures
Outcome	CO1-Learn importance of biofertilizer	
	CO2-Understand classification of biofertilizer	
	CO3-Properties of biofertilizers	
	CO4-Discuss applications of biofertilizers	
Unit-1:	Introduction, History and concept of Bio	
Introduction &	fertilizers, status scope and importance of Bio	
Types of	fertilizers, Classification of Bio fertilizers,	
Biofertilizers	Nitrogen fixation.	
	Structure and characteristic features of	15
	bacterial Bio fertilizers- Azospirillum,	lectures
	Azotobacter, Bacillus, Pseudomonas,	
	Rhizobium and Frankia; Cynobacterial	
	biofertilizers- Anabaena, Nostoc, Hapalosiphon	
	and fungal biofertilizers- AM mycorrhiza and	
	ectomycorhiza	
Unit-2: Production	Strain selection, sterilization, growth and	
technology &	fermentation, equipment, mass production of	
Applications	carrier based and liquid bio fertiizers. FCO	
	specifications and quality control of bio	
	fertilizers.	15
		lectures
	Application technology for seeds, seedlings,	
	tubers, sets etc. Biofertilizers -Storage, shelf	
	life, quality control and marketing. Factors	
	influencing the efficacy of bio fertilizers.	

Biofertilizer Production - References

- Textbook of Biotechnology, R C Dubey
 Biofertilizers in agriculture and Forestry, N. S. Subbarao

Laboratory Sessions

Biofertilizer Production

1	Isolation of Rhizobium from leguminous plants
2	Isolation of Azatobacter
3	Isolation of phosphate solubilizing bacteria
4	Immobilization Technique – Preparation of Agrobeads
5	Consortium Preparation and checking its efficiency
6	Isolation of auxin producers from soil
7	Laboratory scale preparation of Biofertilizers
8	Isolation of Gibberllin producers from soil
9	Carrier sterilization in Biofertilizer production
10	Study of different factors influencing the efficacy of Biofertilizer

Ability Enhancement Course (AEC)

Paper Name: Scientific Communication Skills Paper Code: BT255

No. of credits: 2

Course Outcome	Student will be able to –	No. of lectures
	CO-1 : Learn the importance of scientific communication	
	and characteristics of effective scientific writing.	
	CO-2 : Gain Knowledge about structure and organization	
	of scientific paper.	
Unit 1:	Understanding the purpose and importance of scientific	
Introduction to	communication	
scientific writing	Characteristics of effective scientific writing	
Oral and writing	Overview of different types of scientific documents	
techniques	(research articles, reviews, reports etc.)	
	Planning and structuring an oral presentation	15 lectures
	Techniques for engaging the audience and maintaining	
	interest	
	Effective use of visual aids (slides, posters etc.)	
	Strategies for effective data presentation (tables, figures,	
	graphs)	
	Proper use of scientific terminology and jargon	
Unit 2:		
Structure and	Components of scientific paper (abstract, introduction,	
organization	methods, results, discussion, references)	
	Crafting clear and concise paragraphs	15 lectures
	Importance of logical flow and coherence in scientific	
	writing	

References:

- 1. "Scientific writing and communication: Papers, proposals and presentations" by Angelika H. Hofmann
- 2. Successful Scientific Writing : A Step-By-Step Guide For The Biological And Medical Sciences by Janice R. Matthews, Robert W. Matthews, CAMBRIDGE UNIVERSITY PRESS

