

ISMAIL YUSUF COLLEGE OF ARTS, SCIENCE & COMMERCE

Jogeshwari (East), Mumbai - 400060

Teaching Plan for Academic Year 2023 - 24 (First Half)

Subject: Mathematics

Class: SYBSc and TYBSc

Sem: III and V

Faculty Name: Sh. Thakare Rajesh B.

Month	Month Topics to be covered			
June – 23 S. Y. B. Sc. P- III	The general n-th order linear differential equations, Linear independence, An existence and uniqueness theorem, the Wronskian, Classification: homogeneous and non-homogeneous, General solution of homogeneous and non-homogeneous LDE, The Differential operator and its properties.	20	20	
June – 23 T. Y. B. Sc. P – II	Definition and elementary properties of a group. Order of a group. Subgroups. Criterion for a subset to be a subgroup.	24	24	
June – 23 T. Y. B. Sc. P – IV	Review of Divisibility, Primes and The fundamental theorem of Arithmetic. Congruences: Definition and elementary properties,	24	24	
July – 23 S. Y. B. Sc. P- III	Higher order homogeneous linear differential equations with constant coefficients, the auxiliary equations, Roots of the auxiliary equations: real and distinct, real and repeated, complex and complex repeated. Higher order homogeneous linear differential equations with constant coefficients, the method of undermined coefficients, method of variation of parameters. The inverse diff-erential operator and particular integral, Evaluation of 1/ f(D) for the functions like e ^{ax} , sin ax, cos ax, x ^m , x ^m sin ax, x ^m cos ax, e ^{ax} V and xV where V is any function of x,	20	20	

Frankulty

HEAD ICS
BEPARTMENT OF PAYRILLATICS
Ismail Yusuf College, 60.
Jogeshwari (E), Mumbai - 60.

ISMAIL YUSUF COLLEGE OF ARTS, SCIENCE & COMMERCE

Jogeshwari (East), Mumbai – 400060

	Jogeshwan (East), Wallibar - 400000				
July – 23 T. Y. B. Sc. P – II	Abelian groups. Center of a group. Homomorphisms and isomorphisms. Examples of groups including Z , Q , R , C , Klein 4-group, symmetric and alternating groups, S 1 (= the unit circle in C), $GLn(R)$, $SLn(R)$, the group of $n \times n$ nonsingular upper triangular matrices, the group of $n \times n$ nonsingular upper triangular matrices, and groups of symmetries of plane figures.	24	24		
July – 23 T. Y. B. Sc. P – IV	Complete residue system modulo m, Reduced residue system modulo m, Euler's function and its properties, Fermat's little Theorem. Wilson's theorem, Linear congruence, The Chinese remainder Theorem, Congruences of Higher degree	24	24		
August – 23 S. Y. B. Sc. P- III	Higher order linear differential equations with variable coefficients: The Cauchy's equation: $x^3 d^3 y / dx^3 + x^2 d^2 y / dx^2$ Y. B. Sc. $+x dy/dx + y = f(x)$ and The Legendre's equation: $(ax + b)^3$				
August – 23 T. Y. B. Sc. P- II	Order of an element. Subgroup generated by a subset of the group. Cosets of a subgroup in a group. Lagrange's Theorem. Normal subgroups. Alternating group A _n . Listing normal subgroups of A ₄ , S ₃ . Quotient (or Factor) groups. Fundamental Theorem of homomorphisms of groups.	24	24		
August – 23 T. Y. B. Sc. P- IV	The linear equations $ax + by = c$. The equations $x^2 + y^2 = p$, where p is a prime. The equation $x^2 + y^2 = z^2$, Pythagorean triples, primitive solutions, The equations $x^4 + y^4 = z^2$ and $x^4 + y^4 = z^4$ have no solutions $(x; y; z)$ with $xyz = 0$. Every positive integer n can be expressed as sum of squares of four integers, Universal quadratic forms $x^2 + y^2 + z^2 + t^2$. Assorted examples	24	24		

ISMAIL YUSUF COLLEGE OF ARTS, SCIENCE & COMMERCE

Jogeshwari (East), Mumbai – 400060

	Jogeshwall (East), Mullibal – 400000		
September – 2023 S. Y. B. Sc. P - III	Numerical Solution of initial value problem of first order ordinary differential equation using: (i) Taylors series method, (ii) Picard's method for successive approximation and its convergence, (iii) Euler's method and error estimates for Euler s method, (iv) Modified Euler's Method, (v) Runge-Kutta method of second order and its error estimates, (vi) Runge-Kutta fourth order method	16	16
September - 2023 T. Y. B. Sc. P - II	External direct products of groups. Examples. Relation with internal products such as HK of subgroups H, K of a group. Cayley's Theorem for finite groups	18	18
September – 2023 T. Y. B. Sc. P - IV	Order of an integer and Primitive Roots. Basic notions such as encryption (enciphering) and decryption (deciphering), Cryptosystems, symmetric key cryptography,	18	18
October – 2023 S. Y. B. Sc. P - III	Numerical solution of simultaneous and higher order ordinary differential equation using: (i) Runge-Kutta fourth order method for solving simultaneous ordinary differential equation, (ii) Finite difference method for the solution of two point linear boundary value problem.	10	10
October – 2023 T. Y. B. Sc. P - II	Examples of cyclic groups such as Z and the group μ_n of the n -th roots of unity. Properties of cyclic groups and cyclic subgroups. Finite cyclic groups, infinite cyclic groups and their generators. Properties of generators. The group Z/nZ of residue classes (mod n). Characterization of cyclic groups (as being isomorphic to Z or Z/nZ for some $n \in N$).	18	18
October – 2023 T. Y. B. Sc. P - IV	Simple examples such as shift cipher, Affine cipher, Hill cipher, Vigenere cipher. Concept of Public Key Cryptosystem; RSA Algorithm. An application of Primitive Roots to Cryptography.	18	18

Sox

Signature Faculty Member

Head of the Department

ISMAIL YUSUF COLLEGE OF ARTS, SCIENCE & COMMERCE

Jogeshwari (East), Mumbai – 400060

Teaching Plan for Academic Year 2023 – 24 (Second Half)

Subject: Mathematics

Class: SYBSc and TYBSc

Sem: IV and VI

Faculty Name: Sh. Thakare Rajesh B.

Month	Month Topics to be covered			
December - 23 S. Y. B. Sc. P- III	Unit I. Solution of Algebraic and Transcendental Equations 1. Measures of Errors: Relative, absolute and percentage errors, Accuracy and precision: Ac curacy to n decimal places, accuracy to n significant digits or significant figures, Rounding and Chopping of a number, Types of Errors: Inherent error, Round-o error and Truncation error. 2. Iteration methods based on first degree equation: Newton - Raphson method. Secant method. Regula - Falsi method. Derivations and geometrical interpretation and rate of convergence of all above methods to be covered. 3. General Iteration method: Fixed point iteration method		16	
December - 23 T. Y. B. Sc. P – II	Unit I. Rings (1) Definition and elementary properties of rings (where the definition should include the existence of unity), commutative rings, integral domains and fields. Examples, including Z,Q,R,Z/nZ, C,Mn(R),Z[i],Z[V2],Z[V-5],Z[X],R[X],C[X],(Z/nZ)[X]. (2) Units in a ring. The multiplicative group of units in a ring R [and, in particular, the multiplicative group F* of nonzero elements of a field F]. Description of the units in Z/nZ. Results such as: A finite integral domain is a field. Z/pZ, where p is a prime, as an example of a finite field. (3) Characteristic of a ring. Examples. Elementary facts such as: the characteristic of an integral domain is either 0 or a prime number.	24	24	

ISMAIL YUSUF COLLEGE OF ARTS, SCIENCE & COMMERCE Jogeshwari (East), Mumbai – 400060

	Jogeshwan (East), Mullibar 400000		1
December - 23 T. Y. B. Sc. P – IV	Unit I: Quadratic Reciprocity: Quadratic residues and Legendre Symbol, Gauss's Lemma, Theorem on Legendre Symbol (2/ p), the result: If p is an odd prime and a is an odd integer with (a, p) = 1 then $(a/p) = (-1)^t$ where $t = \sum_{k=1}^{\frac{p-1}{2}} \left[\frac{ka}{p}\right]$, Quadratic Reciprocity law. Theorem on Legendre Symbol p. The Jacobi Symbol and law of reciprocity for Jacobi Symbol. Quadratic Congruences with Composite moduli.	24	24
January – 24 S. Y. B. Sc. P- III	Unit II. Interpolation, Curve fitting, Numerical Integration. 1. Interpolation: Lagrange's Interpolation. Finite difference operators: Forward Difference operator, Backward Difference operator. Shift operator. Newton's forward difference interpolation formula. Newton's backward difference interpolation formula. Derivations of all above methods to be covered. 2. Curve fitting: linear curve fitting. Quadratic curve fitting. 3. Numerical Integration: Trapezoidal Rule. Simpsons 1/3 rd Rule. Simpsons 3/8th Rule. Derivations all the above three rules to be covered	20	20
January – 24 T. Y. B. Sc. P- II	Unit II. Ideals and special rings (1) Ideals in a ring. Sums and products of ideals. Quotient rings. Examples. Prime ideals and maximal ideals. Characterization of prime ideals and maximal ideals in a commutative ring in terms of their quotient rings. Description of the ideals and the prime ideals in Z,R[X] and C[X]. (2) Homomorphisms and isomorphism of rings. Kernel and the image of a homomorphism. Fundamental Theorem of homomorphism of a ring. (3) Construction of the quotient field of an integral domain (Emphasis on Z,Q). A field contains a subfield isomorphic to Z/pZ or Q. (4) Notions of euclidean domain (ED), principal ideal domain (PID). Examples such as Z, Z[i], and polynomial rings. Relation between these two notions (ED =⇒ PID).	24	24
January – 24 T. Y. B. Sc. P- IV	Unit II: Continued Fractions: Finite continued fractions. Infinite continued fractions and representation of an irrational number by an infinite simple continued fraction, Rational approximations to irrational numbers and order of convergence, Best possible approximations. Periodic continued fractions	24	24

ISMAIL YUSUF COLLEGE OF ARTS, SCIENCE & COMMERCE

Jogeshwari (East), Mumbai – 400060

February – 24 S. Y. B. Sc. P- III	Unit III. Solution Linear Systems of Equations, Eigen value problems Linear Systems of Equations: LU Decomposition Method (Dolittle's Method and Crout's Method). Gauss-Seidel Iterative method.	20	20	
February – 24 T. Y. B. Sc. P- II	and prime elements. Examples. (2) Division algorithm in $F[X]$ (where F is a field). Monic polynomials, greatest common divisor of $f(x),g(x) \in F[X]$ (not both 0). Theorem: Given $f(x)$ and $g(x)=0$, in $F[X]$ then their greatest common divisor $d(x) \in F[X]$ exists; moreover, $d(x)=a(x)f(x)+b(x)g(x)$ for some $a(x),b(x) \in F[X]$. Relatively prime polynomials in $F[X]$, irreducible polynomial in $F[X]$. Examples of irreducible polynomials in $(Z/pZ)[X]$ (p prime), Eisenstein Criterion (without proof).		24	
February – 24 T. Y. B. Sc. P- IV	uary – Unit III: Pell's equation, Arithmetic function and Special numbers (15 L) Pell's equation x2 – dy2 = n, where d is not a square of an integer. Solutions of Pell's equation (The proofs of		24	
March – 24 S. Y. B. Sc. P- III	arch – 24 Eigen value problems: Jacobi's method for symmetric matrices. Y. B. Sc. Rutishauser method for arbitrary matrices		8	
March -24 Notion of unique factorization domain (UFD). Elementary properties. Example of a non UFD is $Z[\sqrt{-5}]$ (without proof). Theorem (without proof). Relation between the three notions (ED = \Rightarrow PID = \Rightarrow UFD). Examples such as $Z[X]$ of UFD that are not PID. Theorem (without proof): If R is a UFD, then R[X] is a UFD.		12	12	
March – 24 T. Y. B. Sc. P- IV	rch – 24 Special numbers: Fermat numbers, Mersenne numbers, Perfect numbers, Amicable numbers, Pseudo primes, Carmichael			

South

Signature Faculty Member HEAD DEPARTMENT OF WALKENATION Special Value College Appropriate (III. 1 for size - (III.

Head of the Department

Class: F.Y.B.Sc. Semester I Course Code: USMT101 Course Title: Calculus-I

Name of the Teacher: Mr. Manojkumar. S. Kaurav.

No.	Week	Topic	
1		Introduction to the course	
2	Week 1	Introduction to real numbers	
3		Algebraic and order properties of real numbers	
4		Geometric Mean- Arithmetic Mean inequality, Bernoulli's inequality	
5	Week 2	Absolute Value of real numbers, Triangle inequality and its applications	
6		Bounded set, Supremum and Infimum of a set	
7		Completeness property of real numbers	
8	Week 3	Archimedean property of R	
9		Density of rational numbers in R	
10		Intervals of real line, nested interval property	
11	Week 4	Introduction to sequence of real numbers	
12		Definition of sequence of real numbers and examples	
13		Limit of sequence, and Uniqueness of limit	
14	Week 5	Bounded sequence and examples	
15		Algebra of limits of sequences	
16		Squeeze theorem for sequences	
17	Week 6	Ratio test for sequences	
18		Monotone sequence, Monotone convergence theorem	
19		Subsequences, Divergence Criteria	
20	Week 7	Monotone subsequence theorem	
21		Bolzano-Weierstrass theorem	
22		Bolzano-Weierstrass theorem and Cauchy sequence	
23	Week 8	Introduction to series of real numbers	
24		Sequence of partial sums	
25		Convergent series	
26	Week 9	Divergent series	
27		Some tests for convergence of series	line.
28		Some tests for convergence of series	
29	Week 10	Introduction to limit of function	
30		Limit of functions definition and examples	
31	100	Limits of some standard functions	
32	Week 11	Sequential criteria for limits	
33		Examples and problem solving	Ler
34		Uniqueness of limit	
35	Week 12	Divergence criteria, and Algebra of limits	-
36	1 18	Squeeze theorem for limit.	

ourse Co	de:USMT10	2
ourse Tit	le : Algebra	
lame of t	he Teacher:	Mr.Manojkumar.S.Kaurav.
Lecture No.	Week	Topic
1		Sets
2	Week 1	Properties of sets
3		Properties of sets
4		Natural Numbers
5	Week 2	Set of Integers
6		Well ordering principle for N
7		Principle of Mathematical induction
8	Week 3	First Principal Of Insuction
9		Second Principal Of Insuction
10		Sets, Relation and Functions
11	Week 4	Power set, Operation on sets
12		Cartesian product of sets
13		Definition of relation
14	Week 5	Equivalence relation
15		Equivalence classes
16		Definition of partition
17	Week 6	Every partition gives an equivalence relation and vice-versa.
18		Definition of function
19		Domain, co-domain and the range of function,
20	Week 7	Injective, surjective and bijective functions
21		Composite function
22		Criteria for injective function
23	Week 8	Criteria for surjective function
24		Cantor's Theorem
25		Schroder-Bernstein Theorem
26	Week 9	Division algorithm
27		Euclidean algorithm
28		Properties of G.C.D and L.C.M
29	Week 10	Primes, Euclid's lemma
30		Unique Factorization Theorem
31		Congruences: Definition and elementary properties
32	Week 11	Addition and multiplication modulo n
33		Fermat's Little theorem, Euler's phi-function.
34		Complex Numbers: Addition and multiplication of complex numbers.
35	Week 12	Geometric representation of sum, differences.
36		De-Moivre's Theorem, roots of unity, Euler's Formula

Class : S.Y	.B.Sc. Sen	nester IV
		Jinite diamnsional vector straces
	de: USMT	
	: Linear Al	
Name of the	e Teacher: :	: Mr.Manojkumar.S.Kaurav.
Lecture No.	Week	Topic
1		Introduction to the course
2	Week 1	Definition of points in n-space and its rules
3	week 1	Examples and problem solving
4		located vectors, equivalent vectors, parallel vectors
5		scalar or dot product and its properties
6	144 -1 2	perpendicular or orthogonal vectors
7	Week 2	Examples and problem solving
8	- A 3	norm of a vector, Pythagoras theorem
9	1	projection, angle between vectors
10	11111111	Schwarz inequality, triangle inequality
11	Week 3	Examples and problem solving
12	M. N.	Lines planes and their parametric equations
13	N. B.	homogeneous linear equations
14	Week 4	row operations
15	week 4	Examples and problem solving
16		Gauss elimination, echelon form
17		Limit of sequence
18	10/2-1-5	Uniqueness of limit
19	Week 5	Examples and problem solving
20		Definition of field and examples
21		definition of vector space over a field and examples
22	Week C	vector subspace and examples
23	Week 6	Examples and problem solving
24		Necessary and sufficient condition for subspace
25		sum and direct sum of subspaces
26	Week 7	linear combination
27	Week 7	Examples and problem solving
28		linear span/ generator
29	1-1-2	convex sets
30	Week 8	linear dependence
31	- Week 8	Examples and problem solving
32		linear independence
33		basis of vector space
34	Week 9	dimension of a vector space
35	vveek 9	Examples and problem solving
36		coordinates of a vector

37		basis as a maximal linearly independent se	et
38	Week 10	Examples and problem solving	
39	- Week 10	isomorphism, similar matrices	Semester IV
40		finite dimensional vector spaces	
41	9 7 7 9 5	infinite dimensional vector spaces	TOTAL
42	Week 11	the rank of a matrix	0-melaniA xi
43	Aveek 11	Matrix associated with linear map	StoneMate Tree
44		row rank and column rank.	
45		Linear Transformations	
46	Week 12	Definition of linear transformation	Introductor
47		linear map associated with matrix.	Definition of
48		properties of linear transformations	ur polanne vil

Menny (Subject Tendres)

	3.Sc. Semes	
	le: USMT 3	
		y Differential Equations
Name of th	e Teacher:	: Mr.Manojkumar.S.Kaurav.
Lecture	Week	Topic
No.		PWGL 4HOLWER
1		Introduction to differential equations
2	Week 1	First order Ordinary differential Equations
		Examples and problem solving
3		Definition, solution
4		Formation of differential equation
5	Week 2	Order, degree of differential equation
		Examples and problem solving
6		Picard's Theorem for existence and uniqueness of solution
7		Methods of solution: Variable Separable
8	Week 3	Homogeneous equation
	TT CCI O	Examples and problem solving
9		Exact differential equation
10		Necessary and sufficient condition for exactness
11	Week 4	Integration factor
	WCCK 4	Examples and problem solving
12		Linear differential equation
13		Bernoulli's differential equation
14	Week 5	Orthogonal trajectories
	vveeko	Examples and problem solving
15		Brachistochrone problem
16		Hanging Chain Problem
17	Week 6	Applications
	vveeko	Examples and problem solving
18		Differentials Equations of degree greater than one
19		Solvable for p
20	Week 7	Solvable for x
	week /	Examples and problem solving
21		Solvable for y
22		Second order Linear Equations
23	West	Existence and uniqueness
	Week 8	Examples and problem solving
24		General solution, Particular solution
25		General Solution of homogeneous equation
26	1	Linear dependence-independence
	Week 9	Examples and problem solving
27		The Wronskian
28		Use of known solution to find another
29		Solution of Homogeneous Equation with constant Coefficients

		Examples and problem solving
30	Week 10	Method of Undetermined coefficients
31		Method of Variation of Parameter
32	Mook 11	Method of reduction of order
	Week 11	Examples and problem solving
33		Applications od second order ODE
34	E I	Newtons Laws
35	Week 12	Simple Harmonic Motion: Damped, Undamped
		Examples and problem solving
36		Variations in mechanical and electrical systems

Subject Tendrod

	3.Sc. Semes	
	le: USMT5B	Theory and it's Applications I
		: Mr.Manojkumar.S.Kaurav.
Lecture No.	Week	Topic
1		Divisibility in intgers
2	1471-1	Problems on above
3	Week 1	The Division algorithms
4		Problems on division algorithms
5		Theorem on G.C.D.
6		Euclid's lemma
7	Week 2	The Euclidean algorithm
8		Problems on Euclidean algorithm
9		The least common multiple
10		Problems on least common multiple
11	Week 3	The Diophantine equations
12		The Diophantine equations
13		Problems on Diophantine equations
14		The fundamental theorem of a Arithmetic
15	Week 4	The number √₂ is irrational
16		Problems on distribution of primer
17		The sieve of Eratosthenes
18		There is an infinite number of primer
19	Week 5	Basic properties of Congruences
20	801	Properties of Congruences
21		Problems on Congruences
22	144-16	Problems on Congruences
23	Week 6	Linear Congruences
24		Chinese Remainder Theorem
25		Fermat's Little Theorem
26	1	Problems on Fermat's Little Theorem
27	Week 7	Problems on Fermat's Little Theorem
28		Wilson's Theorem and examples
29		Problems on Wilson's Theorem
30	1	The Sum and Number of Divisors

31	Week 8	The multiplicative functions
32		Problems on multiplicative functions
33		Mobius inversion formula
34		Problems on Mobius inversion formula
35	Week 9	The greatest integer function
36		Problems on greatest integer function
37		Problems on greatest integer function
38	Week 10	Euler's phi-function
39	Week 10	Problems on Euler's phi-function
40		Euler's theorem
41		Problems on Euler's theorem
42	Week 11	Properties of Euler's phi-function
43	- WEEK II	Quadratic Reciprocity Law
44		Problems on Quadratic Reciprocity Law
45		Legendre symbol and properties
46	Week 12	Quadratic Reciprocity Law
47		Quadratic Congruences with Composite Moduli
48		Public Key Cryptography

Subject Tenches

Class : T.Y.		
	de: USMT5	
		gy of Metric Spaces
	he Teacher	: : Mr.Manojkumar.S.Kaurav.
Lecture No.	Week	Topic
1		Introduction to the course
2	Week 1	Definition and examples of metric spaces
3	VVCCKI	open spheres and closed spheres
4		Examples and problem solving
5		Examples and problem solving
6	Week 2	neighborhoods
7	VVEEKZ	open sets
8	303	equivalent Metrics
9		interior points
10	Week 3	closed sets
11	vveeks	limit points and isolated points
12		closure of a set
13		boundary points
14	Week 4	distance between sets and diameter of a set
15	vveek 4	subspace of a metric space
16		product metric spaces.
17		Examples and problem solving
18	Week 5	Completeness
19	vveeko	Convergent sequences
20		Examples and problem solving
21		Examples and problem solving
22	Week 6	Cauchy sequences
23	vveeko	complete spaces
24		Examples and problem solving
25	1000	dense sets and nowhere dense sets
26	Meak 7	. Continuous Functions
27	Week 7	Examples and problem solving
28		Examples and problem solving
29		Definition and characterizations
30	Week 8	extension theorem
31	VVEEK O	uniform continuity
32		homeomorphism
33	-	Examples and problem solving
34	Week 9	Compactness
35	Weeks	Examples and problem solving
36		Compact spaces
37		Examples and problem solving
38		sequential compactness

39	Week 10	equivalence of compactness	
40		Examples and problem solving	
41		sequential compactness	
42	Week 11	compactness and finite intersection property	on
43	7 Week 11	continuous functions and compact spaces.	gn
44		Connectedness	
45		Examples and problem solving	
46	Week 12	Separated sets	olt
47		disconnected and connected sets	- (15
48		Examples and problem solving	10/

My (Subject Tendrob)

lass : S.\	Y.B.Sc. Ser	mester III
ourse C	ode: USM	T301
ourse Ti	itle : Calcu	ulus III matatal alamatal
lame of	the Teach	ner: Mr. Manojkumar S Kaurav.
Lecture		Taula plumut noise
No.	Week	Topic
1		Algebraic and Order properties of Real numbers
2	Week 1	Consequences of algebraic properties
3	vveek 1	Absolute Value of real numbers, Triangle inequality and its applications
4		Some inequalities
5		Bounded set, Supremum (l.u.b.), Infimum (g.l.b.)
6	Maak 2	Archimedean property of R, Density of rational numbers in R
7	Week 2	Countable sets
8	Part Day	Countability of Z, NxN, Q, R, RxR
9		Cardinalities of closed and open intervals are same
10	Washa	Cantors Theorem, Schroder-Berstein Theorem
11	Week 3	Sequences and Series: Sequence: Definition of sequence
12		Convergence and algebra of limits
13	Pro-Endmix	Uniqueness of limit, Bounded sequence, Tail of a sequence
14	10/0-1-4	Algebra of limits of sequences
15	Week 4	Limit Superior, limit inferior and limit of sequence
16		Limit Superios and limit
17		Properties of Limit Superior and limit inferior
18) N/==1.5	Monotone sequence, Monotone convergence theorem
19	Week 5	Subsequences, Divergence Criteria
20	452	Bolzano-Weierstrass theorem
21		Monotone subsequence theorem,
22	144-15	Bolzano-Weierstrass theorem
23	Week 6	Cauchy sequence, Cauchy criteria for convergence
24		Contracting and Cauchy sequence
25	VE- 1	Infinite Series, Convergence criteria
26	1	Cauchy Convergence criteria
27	Week 7	Absolute and conditional convergence
28		Series of positive terms and series of negative terms
29		Rearrangement of series
30	1,44. 1.0	Tests for Convergence: Harmonic serise
31	Week 8	Sequence of Bounded Variation, Abel's Test
32		Ratio test, n th root test, Dirichlet's test
33		Concept of limit, Continuous functions, Algebra of Continuous functions
34	1	Types of discontinuity
35	Week 9	Continuous function on closed and bounded interval
36		Uniform continuity
37		Riemann integration: Set of measure zero
38		Subdivision, Upper sum, lower sum

39	W1-10	Upper Integral, Lower integral, Riemann integration
40	Week 10	Criteria for integrability
41		Existence of Riemann integral
42	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Examples of integrable function
43	Week 11	Sum, difference, multiple of integrable functions
44		Riean summation formula
45		First Fundamental Theorem of Calculus
46	Week 12	Second Fundamental Theorem of Calculus
47		Mean value theorems for integral
48		Applications of mean value theorem

(Subject Textures)

	Y.B.Sc. Sen	
	ode: USM1	
	itle : Group	
	the Teach	er:Mr.Manojkumar S Kaurav.
Lecture	Week	Topic
No.	Week	amidotor
1		Group: definition
2	Week 1	Group: examples
3		Abelian groups
4		finite groups
5		infinite groups
6	Week 2	Properties of groups
7		Order of an element - definition, examples, properties
8	-	groups including Z, Q, R, C, Klein 4-group
9		Group of quaternions, integers modulo n
10	Week 3	S1, GLn(R); SLn(Fp), SLn(R), On
11	TTCCK 3	Bn (= the group of n x n non-singular upper triangular matrices)
12		the group of one-one and onto functions from a set S to itself
13	THE PERSON	groups of symmetries of plane figures such as D4 and S3
14	Week 4	GLn(Fp) the integers modulo under addition and multiplication
15	WEEK 4	Uniqueness of identity, inverse, etc
16		Subgroups: definition, necessary and sufficient conditions
17		examples on finding subgroups of finite groups
18	Week 5	Cosets: definition and properties
19	Week	Lagrange's theorem and corollaries
20		HK is a subgroup of G if and only if HK = KH
21		Order of HK
22	Week 6	Subgroup generated by an element of the group
23	weekb	Cyclic groups: Definition
24		Examples of cyclic groups such as Z
25		Every cyclic group is abelian
26	Week 7	If G = (a), then G = (a-1)
27	week /	Every subgroup of a cyclic group is cyclic
28		Let G be a cyclic group of order n.
29		Let $G = (a)$ and $o(G) = n$, Then $(am) = G$ if and only if $(m, n) = 1$
30	Week 8	An element m in Z* n is a generator of Z* n if and only if (m, n) = 1
31	week 8	If G is an abelian group
32		N is a normal subgroup of G if and only if gNg -1 = N for every g \in G
33	BEEN	The subgroup N of G is a normal subgroup of G if and
34	14/ -1 0	only if every left coset of N in G is a right coset of N in G
35	Week 9	A subgroup N of G is a normal subgroup of G if and
36		only if the product of two right cosets of N in G
37		If H is a subgroup of index 2 in G then H is a normal subgroup of G
38		If H is the only subgroup of G of a fixed finite order

39	Week 10	Homomorphism and Isomorphism: definition, examples
40	Week 10	Fundamental Theorem of homomorphisms of groups
41		The group Z/nZ of residue classes (mod n)
42	Week 11	Cauchy's theorem and Sylow's theorem for Finite Abelian Groups
43] Week II	inverse image under a homomorphism of a subgroup
44		Characterization of cyclic groups
45		Automorphims
46	Week 12	Cayley's Theorem for finite groups
47	WEEK 12	Classification of groups of order less equal 8
48		Properties: (i) o(Sn) = n! (ii) An is a subgroup of Sn,

Duy Subject Teacher)

Class : S.Y		
	ode: USMT3	
		ry Differential Equations
	the Teacher	r: M.S.Kaurav.
Lecture No.	Week	Topic
1		Introduction to differential equations
2	Week 1	First order Ordinary differential Equations
	VVCCK 1	Examples and problem solving
3		Definition, solution
4		Formation of differential equation
5	Week 2	Order, degree of differential equation
13.11	VVCCRZ	Examples and problem solving
6	10 10	Picard's Theorem for existence and uniqueness of solution
7		Methods of solution: Variable Separable
8	Week 3	Homogeneous equation
	Week 3	Examples and problem solving
9	M. Grand	Exact differential equation
10		Necessary and sufficient condition for exactness
11	Week 4	Integration factor
	VVEEK 4	Examples and problem solving
12		Linear differential equation
13		Bernoulli's differential equation
14	Week 5	Orthogonal trajectories
	vveeks	Examples and problem solving
15		Brachistochrone problem
16		Hanging Chain Problem
17	Week 6	Applications
	vveeko	Examples and problem solving
18		Differentials Equations of degree greater than one
19		Solvable for p
20	10/00k 7	Solvable for x
	Week 7	Examples and problem solving
21		Solvable for y
22		Second order Linear Equations
23	Manko	Existence and uniqueness
	Week 8	Examples and problem solving
24		General solution, Particular solution
25		General Solution of homogeneous equation
26	144-1-0	Linear dependence-independence
	Week 9	Examples and problem solving
27		The Wronskian
28		Use of known solution to find another
29		Solution of Homogeneous Equation with constant Coefficients

	W1-10	Examples and problem solving
30	Week 10	Method of Undetermined coefficients
31		Method of Variation of Parameter
32	1 March 11	Method of reduction of order
	Week 11	Examples and problem solving
33		Applications od second order ODE
34		Newtons Laws
35	Week 12	Simple Harmonic Motion: Damped, Undamped
		Examples and problem solving
36		Variations in mechanical and electrical systems

Subject Tadus

Class : T.Y.	B.Sc. Semes	ster V
Course Co	de: MT337F	
	le : Number	
	he Teacher:	Mr. Manojkumar S Kaurav.
Lecture No.	Week	Topic Topic
1		Divisibility in intgers
2	Week 1	Problems on above
3	VVCCKI	The Division algorithms
4		Problems on division algorithms
5		Theorem on G.C.D.
6	Week 2	Euclid's lemma
7	- Week 2	The Euclidean algorithm
8		Problems on Euclidean algorithm
9		The least common multiple
10	Week 3	Problems on least common multiple
11	. Week 5	The Diophantine equations
12		The Diophantine equations
13		Problems on Diophantine equations
14	Week 4	The fundamental theorem of a Arithmetic
15	Week 4	The number √₂ is irrational
16	10 to	Problems on distribution of primer
17		The sieve of Eratosthenes
18	Week 5	There is an infinite number of primer
19	Weeks	Basic properties of Congruences
20	STATE OF THE PARTY	Properties of Congruences
21		Problems on Congruences
22	Week 6	Problems on Congruences
23	WEEKO	Linear Congruences
24		Chinese Remainder Theorem
25		Fermat's Little Theorem
26	Week 7	Problems on Fermat's Little Theorem
27	week /	Problems on Fermat's Little Theorem
28		Wilson's Theorem and examples
29	1	Problems on Wilson's Theorem
30		The Sum and Number of Divisors

31	Week 8	The multiplicative functions
32		Problems on multiplicative functions
33		Mobius inversion formula
34		Problems on Mobius inversion formula
35	Week 9	The greatest integer function
36		Problems on greatest integer function
37		Problems on greatest integer function
38	Week 10	Euler's phi-function
39	- Week 10	Problems on Euler's phi-function
40		Euler's theorem
41		Problems on Euler's theorem
42	Week 11	Properties of Euler's phi-function
43	- WCCK II	Quadratic Reciprocity Law
44		Problems on Quadratic Reciprocity Law
45		Legendre symbol and properties
46	Week 12	Quadratic Reciprocity Law
47		Quadratic Congruences with Composite Moduli
48		Public Key Cryptography

(Subject Touchos)

Government of Maharashtra ISMAIL YUSUF COLLEGE OF ARTS, SCIENCE & COMMERCE Jogeshwari (East), Mumbai – 400060

Teaching Plan

Subject: Mathematics

Class:SYBSc.

Sem: III & IV

Paper- III

Faculty Name: Sh. Obaidullah S. Shaikh

Month	Topics to be covered	Assigned Lecture	Lectures Undertaken
June – 22	 The general n-th order linear differential equations, Linear independence, An existence and uniqueness theorem, the Wronskian. Classification: homogeneous and non-homogeneous, General solution of homogeneous and non-homogeneous LDE, The Differential operator and its properties. 	20	20
July – 22	 Higher order homogeneous linear differential equations with constant coefficients, the auxiliary equations, Roots of the auxiliary equations: real and distinct, real and repeated, complex and complex repeated. Higher order homogeneous linear differential equations with constant coefficients, the method of undermined coefficients, method of variation of parameters. The inverse differential operator and particular integral, Evaluation of 1/ f(D) for the functions like e^{ax}, sin ax, cos ax, x^m, x^m sin ax, x^m cos ax, e^{ax}V and xV where V is any function of x. 	20	20
Aug – 22	 Higher order linear differential equations with variable coefficients: The Cauchy's equation: x³ d³ y/ dx3 + x² d²y /dx² + x dy/dx + y = f(x) and The Legendre's equation: (ax + b)3 d³y/dx³ + (ax + b)² d²y /dx² + (ax + b) dy/ dx + y = f(x). Existence and uniqueness theorem for the solutions of initial value problems for a system of two first order linear differential equations in two unknown functions x, y of a single 	20	20

ISMAIL YUSUF COLLEGE OF ARTS, SCIENCE & COMMERCE

Jogeshwari (East), Mumbai - 400060 independent variable t, of the form $\begin{cases} \frac{dx}{dt} = F(t, x, y) \\ \frac{dy}{dt} = G(t, x, y) \end{cases}$ (Statement only). Homogeneous linear system of two first order differential equations in two unknown functions of a single independent variable t, of the form $\begin{cases} \frac{dx}{dt} = a_1(t)x + b_1(t)y\\ \frac{dy}{dt} = a_2(t)x + b_2(t)y \end{cases}$ 16 16 Numerical Solution of initial value problem of Sep - 22 first order ordinary differential equation using: Taylors series method. Picard's method for successive approximation and its convergence. Euler's method and error estimates for Euler s method. Modified Euler's Method, Runge-Kutta method of second order and its error estimates. Runge-Kutta fourth order method 10 10 Numerical solution of simultaneous and higher Oct - 22 order ordinary differential equation using: Runge-Kutta fourth order method for solving simultaneous ordinary differential equation. Finite difference method for the solution of two point linear boundary value problem. 16 16 Solution of Algebraic and Transcendental Dec - 22 Equations. Measures of Errors: Relative, absolute and percentage errors, Accuracy and precision: Accuracy to n decimal places, accuracy to n significant digits or significant figures. Rounding and Chopping of a number. Types of Errors: Inherent error, Round-off error and Truncation error.

ISMAIL YUSUF COLLEGE OF ARTS, SCIENCE & COMMERCE

Jogeshwari (East), Mumbai – 400060

	 Iteration methods based on first degree equation: Newton - Raphson method. Secant method and Regula - Falsi method. Derivations and geometrical interpretation and rate of convergence of all above methods to be covered. General Iteration method: Fixed point iteration method. 		
Jan-23	 Interpolation, Curve fitting, Numerical Integration. Interpolation: Lagrange's Interpolation. Finite difference operators: Forward Difference operator, Backward Difference operator. Shift operator. Newton's forward difference interpolation formula. Newton's backward difference interpolation formula. Derivations of all above methods to be covered. Curve fitting: linear curve fitting. Quadratic curve fitting. Numerical Integration: Trapezoidal Rule. Simpsons 1/3 rd Rule. Simpsons 3/8th Rule. Derivations all the above three rules to be covered. 	20	20
Feb – 23	 Solution Linear Systems of Equations. Eigen value problems. Linear Systems of Equations: LU Decomposition Method (Dolittle's Method and Crout's Method). Gauss-Seidel Iterative method. 	20	20
Mar-23	 Eigen value problems: Jacobi's method for symmetric matrices. Rutishauser method for arbitrary matrices 	8	8

Signature Faculty member

Signature

HOD/ Coordinator.

HEAD

DEPARTMENT OF M

Ismail Yusuf C

Jogeshwari (E), M.

Government of Maharashtra ISMAIL YUSUF COLLEGE OF ARTS, SCIENCE & COMMERCE Jogeshwari (East), Mumbai – 400060

Teaching Plan

Subject: Mathematics and Statistics- I & II

Class:FYBCOM

Sem: I & II

Faculty Name: Sh. Obaidullah S. Shaikh

Month	Topics to be covered	Assigned Lecture	Lectures Undertaken
July – 20 FYBCOM SEM-I	 Shares: Concept of share, face value, market value, dividend, equity shares, preferential shares, bonus shares. Simple examples Mutual Funds: Simple problems on calculation of Net income after considering entry load, dividend, change in Net Asset Value (N.A.V.) and exit load. Averaging of price under the Systematic Investment Plan (S.I.P.) 	32	32
Aug – 20 FYBCOM SEM-I	 Permutation and Combination: Factorial Notation, Fundamental principle of counting, Permutation as arrangement, Simple examples, combination as selection, Simple examples, Relation between r n C and r n P Examples on commercial application of permutation and combination. Random Variable: Probability distribution of a discrete random variable; Expectation and Variance of random variable, simple examples on probability distributions. 	40	40
Sep – 20 FYBCOM SEM-I	 Probability Theory: Concept of random experiment/trial and possible outcomes; Sample Space and Discrete Sample Space; Events their types, Algebra of Events, Mutually Exclusive and Exhaustive Events, Complimentary events. Classical definition of Probability, Addition theorem (without proof), conditional probability. 	40	40

सत्यमेव जयते Government of Maharashtra

ISMAIL YUSUF COLLEGE OF ARTS, SCIENCE & COMMERCE Jogeshwari (East), Mumbai – 400060

Oct – 20 FYBCOM SEM-I	• Linear Programming Problem: Sketching of graphs of (i) linear equation $Ax + By + C = 0$ (ii) linear inequalities. Mathematical Formulation of Linear Programming Problems upto 3 variables. Solution of Linear Programming Problems using graphical method up to two variables.	32	32
Dec-20 FYBCOM SEM-II	 Functions, Derivatives and Their Applications: Concept of real functions: constant function, linear function, xⁿ, e^x, a^x, log x. Demand, Supply, Total Revenue, Average Revenue, Total cost, Average cost and Profit function. Equilibrium Point, Break-even point Derivative of functions: Derivative as rate measure, Derivative of xⁿ, e^x, a^x, log x. Rules of derivatives: Scalar multiplication, sum, difference, product, quotient (Statements only), Simple problems. Second order derivatives. Applications: Marginal Cost, Marginal Revenue, Elasticity of Demand. Maxima and Minima for functions in Economics and Commerce. 	32	32
JAN-21 FYBCOM SEM-II	 Interest: Simple Interest, Compound Interest (Nominal & Effective Rate of Interest),. Calculations involving up to 4 time periods. Annuity: Annuity Immediate and its Present value, Future value. Equated Monthly Installments (EMI) using reducing balance method & amortization of loans. Stated Annual Rate & Affective Annual Rate Perpetuity and its present value. Simple problems involving up to 4 time periods 	40	40

ISMAIL YUSUF COLLEGE OF ARTS, SCIENCE & COMMERCE

Jogeshwari (East), Mumbai – 400060

FEB-21 FYBCOM SEM-II	 Index Numbers: Concept and usage of Index numbers, Types of Index numbers, Aggregate and Relative Index Numbers, Lasperye's, Paasche's, Dorbisch-Bowley's, Marshall-Edgeworth and Fisher's ideal index numbers. Test of Consistency: Time Reversal Test and Factor Reversal Test. Chain Base Index Nos. Shifting of Base year. Cost of Living Index Numbers, Concept of Real Income, Concept of Wholesale Price Index Number. (Examples on missing values should not be taken). 	38	38
MAR-21 FYBCOM SEM-II	 Probability Distributions: Discrete Probability Distribution: Binomial, Poisson (Properties and applications only, no derivations are expected). Continuous Probability distribution: Normal Distribution. (Properties and applications only, no derivations are expected) 	32	32

Signature Faculty member Namy

Signature HOD/ Coordinator.